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a b s t r a c t

We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dom-
inated reaction–diffusion processes. For such systems, simulation of the diffusion requires
the predominant part of the computing time. In order to reduce the computational work,
the diffusion in parts of the domain is treated macroscopically, in other parts with the
tau-leap method and in the remaining parts with Gillespie’s stochastic simulation algo-
rithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions
are handled by SSA everywhere in the computational domain. A trajectory of the process is
advanced in time by an operator splitting technique and the timesteps are chosen adap-
tively. The spatial adaptation is based on estimates of the errors in the tau-leap method
and the macroscopic diffusion. The accuracy and efficiency of the method are demon-
strated in examples from molecular biology where the domain is discretized by unstruc-
tured meshes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The number of molecules of each species in a biological cell is often small and a mesoscopic, stochastic model for the
chemical reactions is necessary to explain experimental data [5,41]. The macroscopic, deterministic equation for the concen-
trations of the chemical species is the reaction rate equation (RRE). This is an accurate model when the copy numbers are
large but this is often not the case e.g. in the nucleus of a cell. Many computational methods have been developed in the
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last decade for the well stirred mesoscopic, stochastic problem when the distribution of the species in space is ignored. Re-
cently, methods for the space dependent case have appeared.

Continuous time discrete (state) space Markov processes are well established as a mathematical tool to analyze the
behavior of biochemical reaction networks in systems biology. Most models assume that the system is well stirred and that
the model can be analyzed by solving the chemical master equation (CME) for the probability density function (PDF) or, if the
dimension of the model is too high, by simulation of the process with e.g. the stochastic simulation algorithm (SSA) [25].
However, there are scenarios where diffusive transport needs to be included in the model [16,22,42]. If the spatial distribu-
tion of molecules is important, diffusion can be accounted for by discretizing the domain and allowing species to jump be-
tween adjacent computational cells (or subvolumes, compartments, voxels) [23,33]. Chemical reactions occur between the
molecules in each subvolume as in the well stirred case and in this setting the PDF is the solution of the reaction–diffusion
master equation (RDME). Also in this case the system can be simulated by a stochastic method [7,18,19,22,30,38,52]. Based
on the next reaction method (NRM) [24], the next subvolume method (NSM) [18] is an efficient algorithm for simulation of
reaction–diffusion processes and it has been implemented for Cartesian meshes in [28] and for general, unstructured meshes
in [14]. Methods for stochastic reaction–diffusion models are compared in [4,15].

One challenging problem when simulating stochastic models in the well stirred case is stiffness. If a few of the reactions
are very fast this leads to very small timesteps in the algorithm and frequent sampling of the fast reaction channels. Often,
this is caused by some of the species being present in a much higher copy number than the others for which the stochastic
fluctuations are less important. Due to this, it may be difficult to simulate the system on the time scale of the slower, often
more interesting dynamics. This has led to the development of many approximate, hybrid and multiscale methods, for exam-
ples of these methods and reviews see e.g. [8,21,39,43]. The most popular approximate method in the well stirred case is the
tau-leap method [26] and it has also been used for diffusion [46]. It approximates the number of events taking place in a time
interval by a Poissonian random variable, and thus several events may be ‘‘leaped over” in one timestep.

For systems governed by the RDME, the situation can be even worse. High copy number species, possibly diffusing faster
than some of the less abundant species, may render the system very stiff. Almost all events generated by the algorithm will be
diffusion events occurring on a short time scale. This problem will inevitably arise if models become more detailed and explic-
itly include e.g. second messengers or small metabolites. If high concentrations are localized to some region in space and time,
which may be the case in models of e.g. transient release of intracellular calcium pools or a step increase in second messenger
concentration due to a transient stimulus, any method dealing with the stiffness needs to be adaptive in space and time.

Realizations of a process governed by a RDME are generated on an unstructured mesh in [19]. The diffusion coefficients in
the RDME are derived from a finite element discretization of the diffusion operator. This discretization is also the macro-
scopic approximation of the diffusion. A hybrid method is proposed where the diffusion of some species is advanced mac-
roscopically in all timesteps in the whole computational domain. The inefficiency caused by the diffusion of species present
in large numbers in the subvolumes is then reduced considerably. The macroscopic part is coupled to the mesoscopic sim-
ulation of the trajectories by operator splitting.

Starting with the framework in [19], we develop in this paper an adaptive, multilevel algorithm that automatically
chooses between the mesoscopic NSM, the explicit tau-leap method, and a macroscopic treatment for the diffusion. This
is done by using an operator splitting scheme [51] so that we in each timestep can evolve the RDME using a different method
in different regions in space. Provided that the copy number is high enough, the tau-leap method is more efficient than SSA
and the cost of integration of the macroscopic diffusion equation is negligible compared to the two stochastic methods. The
selection of the method to update the degrees of freedom (dofs) in every timestep is based on error estimates for the ex-
pected values when diffusion is advanced with tau-leaping [45] or macroscopically and on the risk of a dof becoming neg-
ative in a timestep. The same technique is applicable to both structured Cartesian meshes and unstructured meshes. The
simulation time can decrease significantly with this approach with full control of the local errors in the approximations.
Two different methods are mixed in [46] where the reactions are treated stochastically and the diffusion by a deterministic
approximation.

The contents of the paper are as follows. The modeling background and the RDME are presented in Section 2. The adaptive
method is proposed and analyzed in Section 3. The space operator is split according to Strang [51] in Section 3.1 and then the
space and time adaptive algorithm is described in Sections 3.2, 3.3 and 3.4. The computational work is estimated in Section
3.5. The method is first applied to diffusion of one species in two dimensions (2D) in Section 4.1 to illustrate the behavior of
the algorithm. Then in Section 4.2 a more realistic model with a domain modeling a yeast cell in three dimensions (3D) is
simulated on an unstructured mesh in three scenarios using an extension of the URDME software [14] resulting in consid-
erable savings in computing time in some scenarios.
2. Reaction–diffusion master equation

Let the computational domain X in space be covered by non-overlapping computational cells or subvolumes
Cj; j ¼ 1; . . . ;K . The chemical system has N active species Xij; i ¼ 1; . . . ;N, in the K cells, j ¼ 1; . . . ;K . The non-negative integer
xij is the copy number of species i in cell j. The state of the system is the array x with N � K components xij. The jth column of
x holds the number of molecules of the species in cell j and is denoted by x:j. The copy numbers of species i in all cells are
found in the ith row of x and is denoted by xi:. The state of the system is changed instantaneously by a chemical reaction or
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by a molecule diffusing from one cell to an adjacent cell. The probability of the system to be in state x at time t is given by the
PDF pðx; tÞ.

A chemical reaction r in Cj is a transition from one state x:j before the reaction to the state x:j þ mr after the reaction. The
probability per unit time or propensity that reaction r will occur in Cj is ar and depends on x:j. Usually, ar is a low order poly-
nomial or a rational polynomial. The vector mr of a reaction is the state-change vector. It consists of small integer numbers
and is independent of j. A chemical reaction in cell j can be written
x:j !
arðx:jÞ

x:j þ mr : ð2:1Þ
An example of a bimolecular reaction in Ck is
Xik þ Xjk !
a1ðx:kÞXlk: ð2:2Þ
In this case, a1ðx:kÞ ¼ c1kxikxjk according to the law of mass action and the state-change vector is m1i ¼ m1j ¼ �1; m1l ¼ 1. Split
mr into two parts
mr ¼ mþr þ m�r ; mþri ¼maxðmri; 0Þ; m�ri ¼minðmri;0Þ;
and let y P 0 denote that yi P 0 for every i. The master equation for the PDF p in a system without diffusion and R reactions
is
@pðx; tÞ
@t

¼Mpðx; tÞ �
XK

j¼1

XR

r¼1
x:j�mþr P0

arðx:j � mrÞpðx:1; . . . ;x:j � mr ; . . . ;x:K ; tÞ �
XK

j¼1

XR

r¼1
x:jþm�r P0

arðx:jÞpðx; tÞ: ð2:3Þ
With one cell in (2.3), K ¼ 1, we have the chemical master equation (CME) for a well stirred system, see [23, Chapter 7,33,
Chapter V].

Diffusion for a species is modeled as a special kind of reaction with first order kinetics
Xik!
bkj

Xij: ð2:4Þ
One molecule of species i in Ck moves to adjacent Cj with propensity bkj and state-change vector gkj given by
bkj ¼ qkjxik; k – j; gkj;j ¼ 1; gkj;k ¼ �1; gkj;i ¼ 0; i – j; k; bjj ¼ 0; qjj ¼ 0: ð2:5Þ
The constant qkj depends on the intensity of the diffusion c and the geometry and the size of the cells Ck and Cj. In order to
simplify the notation we assume here that the diffusion constant c is the same for all species, but this will not be the case
later in the numerical experiments.

In a system without chemical reactions and only diffusion, the master equation can be written in the same manner as the
CME in (2.3), see [23, Chapter 8,33, Chapter XIV],
@pðx; tÞ
@t

¼ Dpðx; tÞ �
XN

i¼1

XK

k¼1

XK

j¼1

bkjðxi: � gkjÞpðx1:; . . . ;xi: � gkj; . . . ;xN:; tÞ � bkjðxi:Þpðx; tÞ: ð2:6Þ
Summation over the cells is restricted by constraints on x in the same way as in (2.3). Diffusion between Ck and Cj is possible
only when they have a point (1D), an edge (2D) or a facet (3D) in common. Hence, most qkj and terms in (2.6) are zero.

The RDME for a chemical system with both reactions and diffusion is derived from (2.3) and (2.6) by adding them
together
@pðx; tÞ
@t

¼Mpðx; tÞ þ Dpðx; tÞ: ð2:7Þ
For the mesocopic model to be valid, there is a lower bound on the size h of the cells due to the reaction radius qR of the
molecules. A discussion of these matters is found in [6,18,20,29,47].

The biochemical models in this paper are assumed to be such that the state space is finite, i.e. there is a xmax > 0 such that
if xij P xmax; i ¼ 1; . . . ;N; j ¼ 1; . . . ;K; then pðx; tÞ ¼ 0. This restriction can be motivated for physical and biological reasons.

Let jCjj be the length (1D), area (2D), or volume (3D) of cell j. The concentration of species i in cell j is jCjj�1xij. The expected
value of the concentration /ijðtÞ is defined by
/ij ¼ �xijðtÞ=jCjj ¼
X
xP0

jCjj�1xijðtÞpðx; tÞ: ð2:8Þ
The macroscopic equation satisfied by /ij in a system without diffusion is the RRE.
The corresponding equation for a reactive and diffusive system derived in [19] from (2.3), (2.6) and (2.7) is the reaction–

diffusion equation
d/T
i:

dt
¼ xið/Þ þ cD/T

i: ð2:9Þ
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for each i. Without diffusion, c ¼ 0, we have the RRE. The off-diagonal elements of the diffusion matrix are the same for each
species cDjk ¼ qkjjCkj=jCjjP 0; j – k, and the diagonal elements are cDjj ¼ �

P
k–jqjk < 0. The coefficients qkj are inferred from

a discretization of the Laplace operator D with Neumann boundary conditions. A detailed discussion of the relation between
the elements of D and q is found in [19, Sections 2 and 3]. A finite difference approximation is the simplest choice on a Carte-
sian mesh and a finite element (FE) approximation is the preferred method on an unstructured mesh as in [19].

If the mesh is a Cartesian lattice with a constant mesh size h and D is approximated by the standard 3-point, 5-point, or 7-
point stencil in 1D, 2D, or 3D, respectively, then for all cells jCjj ¼ hd where d is the dimension and qkj ¼ c=h2. With a FE dis-
cretization using standard piecewise linear test and basis functions and mass lumping on a triangulated, unstructured mesh,
D ¼ A�1S, where S is symmetric and negative semi-definite and A is a diagonal matrix with the diagonal elements Ajj ¼ jCjj
[19]. Let Q be defined by Q jk ¼ qkj for k – j and Q jj ¼ �

P
kqjk. Then
Fig. 2.1
(right).
Q ¼ cADA�1 ¼ cSA�1 ¼ cDT ; ð2:10Þ
and
P

jQ jk ¼ 0.
The vertices or nodes (or subvolume centers) are connected by the edges in a graph in Fig. 2.1. The diffusion takes place

along the edges in both the unstructured and the structured mesh.
Let the number of particles in a subvolume be scaled by !. If the system is well stirred, then K ¼ 1 and an interpretation is

that the volume of the system grows or that the copy number in a fixed volume grows as ! grows. It is proved in [35] that
under certain usually satisfied assumptions on the propensities ar , the random vector X! representing the state of the well
stirred system converges to the solution of the RRE in probability in an interval ½0; t� as ! increases i.e.
lim
!!1

P sup
s6t
k!�1X!ðsÞ � /:1ðsÞk > d

� �
¼ 0 ð2:11Þ
for any d > 0.
The linear propensities of the diffusion satisfy the conditions in [35]. The state vector of a diffusive system is always finite

(but large) since there is a lower bound on the mesh size h. Let the copy number xij be scaled by an increasing number ! and
the cell size jCjj in every cell. The random state array X! in (2.11) now has NK components. Each element X!ij of X! represents
the copy number per volume of species i in subvolume j. It follows from [35] that !�1X! with PDF solving the RDME (2.7)
converges to the concentrations / solving (2.9) as !!1 in the same way as in (2.11). The conclusion is that a macroscopic,
deterministic treatment of a species in a cell is accurate when the copy number is large. The convergence rate is as expected
from [36] of Oð!�1=2Þ in numerical experiments in [19] and in Section 4.1.
3. Method of solution

The algorithm for realization of one trajectory of the diffusive chemical system governed by the RDME (2.7) is a hybrid
method blending SSA, tau-leaping and a macroscopic approximation with an automatic choice between the different levels
of modeling for systems with many more diffusion events than reaction events. The advantage is reduced computing time
and control of the errors introduced in the simulation of the diffusion by the tau-leap method and the approximation at the
macro level.

The basic idea is to deal with the stiffness caused by frequent diffusion events by applying approximate methods (explicit
tau-leaping or a macroscopic scheme) to update those species for which diffusion is described sufficiently accurately by the
respective method. Since the distribution of the species varies in space and time, the selection of the method must be
adaptive. First, a time interval Dt is determined in which the relative error in the state variable caused by tau-leaping or
the macroscopic Euler scheme is below a specified tolerance. Then all degrees of freedom (dofs) are partitioned into two sets,
one set for variables suitable for tau-leaping and one set suitable for the macro level approximation. Looking at the first set,
we remove the dofs that suffer a large risk of becoming negative by tau-leaping in that interval. Those dofs are placed in a
third SSA set which will be updated by NSM in the time interval and we arrive at the final partitioning with three sets
k

j
j k

. Vertices (o), edges (solid lines), and the subvolume boundaries (dashed lines) in an unstructured mesh (left) and a Cartesian structured mesh



L. Ferm et al. / Journal of Computational Physics 229 (2010) 343–360 347
Vs;Vm;VSSA. On the boundaries between sets the most accurate method has precedence and this allows us to classify every
edge in the mesh to tell us which method to use to simulate the diffusion. The reactions are all treated by SSA.

The diffusion operator in (2.7) is split into three parts corresponding to the SSA, tau-leap, and macroscopic edges. Then
each part is advanced in time consecutively in a Strang splitting scheme introducing an error proportional to Dt3 locally and
to Dt2 globally. Since the tau-leap and the Euler methods are first order accurate, the global error of the complete scheme is
of OðDtÞ.

In the following sections, we consider the different components of the method in more detail. In Section 3.1, the ideas
underlying operator splitting are reviewed. In Section 3.2, the criteria for the partitioning are given and the ensuing section
deals with the time adaptivity. A detailed account of the full algorithm is found in Section 3.4. The computational work is
estimated in Section 3.5.

3.1. Operator splitting

Suppose that the right hand side of the RDME (2.7) consists of two sums Ap and Bp such that
@pðx; tÞ
@t

¼ Apðx; tÞ þ Bpðx; tÞ; ð3:1Þ
and that it is much simpler to solve @tp ¼ Ap and @tp ¼ Bp separate from each other than the full equation in (3.1). Then, by
first solving @tp ¼ Bp numerically in an interval ½t; t þ Dt� and then @tp ¼ Ap in ½t; t þ Dt� with the output from the first equa-
tion as initial data for the second equation, we have an approximation of pðx; t þ DtÞ of OðDtÞ globally [40]. The error is pro-
portional to the commutator of A and B. Since the operators are independent of time, the solution in the first step can be
written
p1ðx; t þ DtÞ ¼ eDtBpðx; tÞ
and in the second step
p2ðx; t þ DtÞ ¼ eDtAp1ðx; t þ DtÞ
and consequently the solution pO obtained by operator splitting is
pOðx; t þ DtÞ ¼ p2ðx; t þ DtÞ ¼ eDtAeDtBpðx; tÞ ð3:2Þ
with the difference pOðx; t þ DtÞ � pðx; t þ DtÞ of O Dtð Þ. A realization of the stochastic process XO in ½t; t þ Dt�with the PDF pO

in (3.2) is achieved by a trajectory X1 generated with the reactions involved in B in ½t; t þ Dt=2� and followed by X2 simulated
by the reactions defining A in the same interval.

In Strang splitting [51] the time accuracy is improved. The solution of (3.1) is approximated in the interval by first inte-
grating @tp ¼ Ap between t and t þ Dt=2, then @tp ¼ Bp in ½t; t þ Dt�, and finally @tp ¼ Ap in ½t þ Dt=2; t þ Dt�with the preced-
ing output p as input to the next step. The local error in each step is ofO Dt3

� �
with the bounded operators in (2.7) making the

approximation second order accurate globally. The trajectory XS is computed by using the reactions in A, then B, and finally
A again.

Now consider the RDME (2.7) and split the right hand side into three parts
@pðx; tÞ
@t

¼ Apðx; tÞ þ Bpðx; tÞ þ Cpðx; tÞ: ð3:3Þ
With the Strang technique applied recursively to (3.3), the approximation is
pðx; t þ DtÞ ¼ eDtðAþBþCÞpðx; tÞ ¼ e
1
2DtAe

1
2DtBeDtCe

1
2DtBe

1
2DtApðx; tÞ þ OðDt3Þ: ð3:4Þ
Let XðtÞ be a realization with SSA of the process with the PDF in (3.3) and let XSðtÞ be the realization with the PDF given by
the approximation (3.4) in ½t; t þ Dt�. The reaction and diffusion propensities are time independent and the split process can
be considered as one where each one of A;B, and C is active in one third of the time interval and silent in the remaining two
thirds. The stages to generate one trajectory XS using SSA are

Algorithm 3.1

1. Advance XS1 Dt=2 in time with the process defined by A starting with XSðtÞ.
2. Advance XS2 Dt=2 in time with the process defined by B starting with XS1ðt þ Dt=2Þ.
3. Advance XS3 Dt in time with the process defined by C starting with XS2ðt þ Dt=2Þ.
4. Advance XS4 Dt=2 in time with the process defined by B starting with XS3ðt þ DtÞ.
5. Advance XS5 Dt=2 in time with the process defined by A starting with XS4ðt þ Dt=2Þ.
6. Let XSðt þ DtÞ ¼ XS5ðt þ Dt=2Þ.

The PDF corresponding to XSðtÞ is pSðx; tÞ satisfying
pSðx; t þ DtÞ ¼ e
1
2DtAe

1
2DtBeDtCe

1
2DtBe

1
2DtApSðx; tÞ: ð3:5Þ
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Compared to a direct splitting obtained by applying the procedure leading to (3.2) twice
pðx; t þ DtÞ ¼ eDtAeDtBeDtCpðx; tÞ þ O Dt2� �
; ð3:6Þ
higher accuracy is achieved with (3.4) requiring little extra work.
The following weak convergence result, valid e.g. for the moments, is easily proved:

Proposition 3.2. Let g be a bounded function, let XðtÞ be the realization of the process defined by the stable integration of pðx; tÞ in
(3.3), and let XSðtÞ be defined by pSðx; tÞ in (3.5) with Xð0Þ ¼ XSð0Þ and pðx;0Þ ¼ pSðx;0Þ. Then
E½gðXSðtnÞÞ � gðXðtnÞÞ� ¼ OðDt2Þ; tn ¼ nDt:
Proof. The difference between the PDFs is pðx; tnÞ � pSðx; tnÞ ¼ OðDt2Þ by standard theory for numerical solution of ordinary
differential equations [27]. Hence, by definition
E½gðXðtnÞÞ � gðXSðtnÞÞ� ¼
X

x

gðxÞðpðx; tnÞ � pSðx; tnÞÞ ¼ OðDt2Þ;
since the state space is finite by the assumption in Section 2. h

In our adaptive algorithm, the master operator in (2.7) is split into three parts
A ¼ Dm; B ¼ Ds; C ¼MþDSSA; ð3:7Þ
where D ¼ Dm þDs þDSSA. In a trajectory XS, the diffusion in steps 1 and 5 of Algorithm 3.1 is approximated macroscopically
(corresponding to Dm). In Section 4.1 the diffusion in steps 2 and 4 is approximated by the tau-leap method (Ds), and the
diffusion and the chemical reactions in step 3 are simulated by SSA. In Section 4.2, we use the splitting
A ¼ Dm;B ¼MþDSSA; C ¼ Ds and NSM is used for steps 2 and 4 for higher efficiency. The error in the moments of XS due
to the time splitting is of OðDt2Þ according to the proposition but additional errors are introduced by the macro level and
tau-leap diffusion. We will show below that those errors are of OðDtÞ and consequently we can ignore the splitting error
for small Dt.

3.2. Space adaptivity

The reactions and the diffusion of the species are treated in three different ways:

1. SSA for the reactions and diffusion for a small copy number of the species in each subvolume
2. tau-leaping for intermediate copy numbers
3. deterministic, macroscopic diffusion for large copy numbers.

The method of diffusing the molecules is different in different parts of the domain and for different species and varies in
time. The method is determined by estimates of the errors in tau-leaping and macroscopic diffusion.

3.2.1. SSA
The direct method by Gillespie [25] is applied to all reactions and to diffusion between certain vertices. Let Ei

SSA be the set
of pairs of vertices (or subvolumes) ðj; kÞ between which diffusion of species i is treated with SSA and let t0 ¼ tn and ‘ ¼ 0.
Sum all reaction propensities ar and the propensities bjk; ðj; kÞ 2 E i

SSA, at t‘ to obtain
b‘ ¼
XK

j¼1

XR

r¼1

arðx‘:jÞ þ
XN

i¼1

X
ðj;kÞ2Ei

SSA

bjk x‘i:
� �

: ð3:8Þ
The next event will occur after time dt‘ which is exponentially distributed with parameter b‘. Update the time t‘þ1 ¼ t‘ þ dt‘.
If t‘þ1 6 tnþ1, then choose either a reaction event r with probability arðx:jÞ=b‘ or a diffusion event with probability bjkðxi:Þ=b‘,
update the state vector at t‘þ1; ‘ :¼ ‘þ 1, and continue with a new SSA step. If t‘þ1 > tnþ1 ¼ tn þ Dtn, then interrupt the SSA
iteration and let the present state vector be the state vector at tnþ1. SSA is used for the exact stochastic step in Section 4.1. The
NSM algorithm in [18] is an efficient implementation of SSA for reaction–diffusion processes and is used as implemented in
URDME [14] in the experiments in Section 4.2.

3.2.2. s-leaping
The diffusion of species i from subvolume k to subvolume j in the interval ½tn; tnþ1� of length Dtn is approximated by the

tau-leap method [26] in the following way. Let E i
s be the set of pairs of vertices ðk; jÞ with tau-leap approximation of the dif-

fusion between them for species i. The number of molecules un
kj of species i moving from k to j during ½tn; tnþ1� with ðk; jÞ 2 Ei

s
is Poisson distributed with parameter qkjx

n
ikDtn and a probability mass function (PMF) P qkjx

n
ikDtn

� �
. The total number of mol-

ecules moving from adjacent cells to j is vn
þj ¼

P
kun

kj and the number of molecules moving away from j is vn
�j ¼

P
kun

jk in the
interval. Thus, the total change in cell j is
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Dvn
j ¼ vn

þj � vn
�j: ð3:9Þ
Since each un
kj is P qkjx

n
ikDtn

� �
, the sums vn

þj and vn
�j are Poisson distributed with parameters kþj and k�j , respectively, where
kþj ¼
X
k;k–j

qkjx
n
ikDtn ¼ Dtn

X
k;k–j

Q jkxn
ik;

k�j ¼
X
k;k–j

qjkxn
ijDtn ¼ �DtnQjjx

n
ij;

ð3:10Þ
with the definition of Q from (2.10). The summation is over k such that ðk; jÞ 2 E i
s. The difference Dvn

j between two Poisson
distributed random numbers is Skellam distributed [48]. The probability for Dvn

j ¼ a is
P Dvn
j ¼ a

� �
¼ pSa ¼ exp � kþj þ k�j

� �� � kþj
k�j

 !a=2

Ia 2
ffiffiffiffiffiffiffiffiffiffiffi
kþj k�j

q� �
ð3:11Þ
using the modified Bessel function Ia. The Skellam distribution of Dvn
j is well approximated by the normal distribution

N lj;r2
j

� �
in particular for large kþj and k�j , see [31,50], with
lj ¼ kþj � k�j ¼ Dtn
X

k

Q jkxn
ik;

r2
j ¼ kþj þ k�j ¼ Dtn

X
k;k–j

Q jkxn
ik � Q jjx

n
ij

 !
¼ Dtn

X
k

jQ jjkxn
ik;

ð3:12Þ
where jQ jjk ¼ Q jk when j – k and jQ jjj ¼ �Q jj and consequently jQ jjk P 0. The variance r2
j in (3.12) is positive if xn

ik – 0 at least
for some k and it is a local weighted summation of xn

ik with the largest weight on xn
ij.

The new number of molecules in cell j at tnþ1 is
xnþ1
ij ¼ xn

ij þ Dvn
j ð3:13Þ
after updating by Dvn
j in (3.9). There is a risk that xnþ1

ij < 0 which is unacceptable for physical reasons. A number of remedies
have been suggested to avoid this predicament in the tau-leap method [2,3,9,13,44,53]. Approximation of Dvn

j by a binomial
distribution also guarantees non-negativity in [13,53]. The numbers un

jk are reduced successively in [45] to avoid negative
states and in [9] the reactions are simulated by SSA if the propensity times the timestep is larger than a given parameter.
Our solution to this problem is as follows for the diffusion. The probability of obtaining a negative number of molecules
is from (3.11)
P xnþ1
ij 6 �1

� �
¼ P Dvn

j 6 �1� xn
ij

� �
¼
X�1�xn

ij

a¼�1
pSa: ð3:14Þ
There is no known simple closed form of the cumulative distribution function of the Skellam distribution and the probability
P in (3.14) is expensive to evaluate as a sum of the PDFs. However, the approximation with the normal distribution with
mean lj and variation r2

j from (3.12) yields
P xnþ1
ij 6 �1

� �
� 1ffiffiffiffiffiffiffi

2p
p

rj

Z �1�xn
ij

�1
exp �ðx� ljÞ

2= 2r2
j

� �� �
dx: ð3:15Þ
By taking a smaller timestep, the risk in (3.14) decreases but with the same Dtn for all diffusion events the generation of the
trajectory becomes less efficient.

In our algorithm, we will accept the tau-leaping in a vertex if the estimated probability P for failure in (3.14) is sufficiently
small P < �1 for some �1 > 0. Otherwise, diffusion in the subvolume is simulated by SSA in the time interval. If there still is a
negative xnþ1

ij after these precautions, then the non-negativity is enforced in the same way as in [45]. The error due to the
finite timestep is estimated in Section 3.3.

3.2.3. Macroscopic diffusion
It is shown in [19] that the mean values �xi: of the copy numbers of species i in the subvolumes exactly satisfy the equation
d�xT
i:

dt
¼ Q �xT

i: ð3:16Þ
in a system with only diffusion. By the properties of Q in (2.10), �xT
i: is bounded for all time. Furthermore, the variance is

bounded by Ck�xi:k and the random variation about the mean value is �
ffiffiffiffiffiffiffiffiffiffi
k�xi:k

p
[19]. Thus, the quotient between the standard

deviations and the mean values is � 1=
ffiffiffiffiffiffiffiffiffiffi
k�xi:k

p
and for large copy numbers, the effect of diffusion is well approximated by

(3.16). We will derive the same approximation from the tau-leaping in the previous section but now including a local error
estimate.
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When the parameter kn
kj ¼ qkjx

n
ikDtn is large in the Poisson distribution for the number of molecules un

kj diffusing from k to j,
the distribution of un

kj is close to the normal distribution N kn
kj; k

n
kj

� �
(see e.g. [26,37]). Then we can write
un
kj ¼ kn

kj þ nn
kj;
where nn
kj is N 0; kn

kj

� �
. Therefore, the total outflow and inflow of molecules to cell j is
Dxn
ij ¼

X
k;k–j

un
kj �

X
k;k–j

un
jk ¼ Dtn

X
k;k–j

qkjx
n
ik �

X
k;k–j

qjkxn
ij

 !
þ Nn

j ¼ Dtn Q xn
i:

� �T
� �

j
þ Nn

j ;N
n
j �

X
k;k–j

nn
kj �

X
k;k–j

nn
jk:
The mean value of Nn
j is 0 and we infer
�xnþ1
ij � E xnþ1

ij

h i
¼ E xn

ij þ Dxn
ij

h i
¼ �xn

ij þ DtnE Q xn
i:

� �T
� �

j

	 

þ E Nn

j

h i
¼ �xn

ij þ Dtn Q �xn
i:

� �T
� �

j
: ð3:17Þ
This is the time discretization of (3.16) with the Euler forward method [27]. The variance of Nn
j is r2

j in (3.12). Since
Dx‘ij; ‘ ¼ 0; . . . ;n� 1; are independent and x0

ij is given, the variance of xn
ij is
Var xn
ij

h i
¼ Var

Xn�1

‘¼0

Dx‘ij

" #
¼
Xn�1

‘¼0

Var Dx‘ij
h i

¼
Xn�1

‘¼0

Var N‘
j

h i
¼
Xn�1

‘¼0

Dt‘ jQ j x‘i:
� �T

� �
j
: ð3:18Þ
The random error in the macroscopic approximation of the diffusion in (3.16) and (3.17) is estimated in the next proposition.

Proposition 3.3. Assume that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQ j x‘i:
� �T

� �
j

r �
�x‘ij 6 �2; ‘ ¼ 0; . . . ; n� 1; ð3:19Þ
for some small �2 > 0. Then the deviation dn
ij of xn

ij from �xn
ij satisfies with probability 0.95
dn
ij

�xn
ij

2 �1:96
�2vn

ij

�xn
ij

;1:96
�2vn

ij

�xn
ij

" #
;

where
vn
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

‘¼0
Dt‘ð�x‘ijÞ

2

r
:

Proof. Replace jQ jðxn
i:Þ

T
� �

j
in (3.18) by the upper bound in the assumption and the proposition follows from the properties of

the normal distribution. h

An approximation of vn
ij is
vn
ij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ tn

0
ð�xijðtÞÞ2 dt

s
¼

ffiffiffiffi
tn
p ffiffiffiffiffiffiffiffiffiffiffi

ð�xijÞ2
q

; ð�xijÞ2 � ðtnÞ�1
Z tn

0
ð�xijðtÞÞ2 dt:
Consequently, �2vn
ij

� �
=�xn

ij � �2

ffiffiffiffi
tn
p

. The quotient in (3.19) is small when �xn
ij is large since the numerator is �

ffiffiffiffiffi
�xn

ij

q
. As an exam-

ple consider a uniform Cartesian mesh in 2D with step size h with the standard 5-point stencil approximating the Laplacian
in Section 2. Then
jQ j xn
i:

� �T
� �

j
¼ h�2c xn

i;j�1 þ xn
i;jþ1 þ xn

i�1;j þ xn
iþ1;j þ 4xn

ij

� �
;

and with a smooth behavior of xn
ij in the neighborhood of j, the condition (3.19) is 2

ffiffiffiffiffiffi
2c

p
= h

ffiffiffiffiffi
xn

ij

q� �
K �2.

A simple macroscopic diffusion is sufficient for good accuracy if the conditions in Proposition 3.3 are satisfied. The pairs of
vertices ðk; jÞ where the deterministic diffusion is satisfactory for species i are collected in the set Ei

m. The great advantage is
that the computational cost of diffusion at the macro level is negligible compared to updating the copy numbers with the
tau-leap method or SSA.

3.3. Timestep selection

The timesteps are selected such that a tolerance �3 is satisfied by the relative local discretization error in every step. The
expected error in the tau-leap stage of the Strang splitting in Algorithm 3.1 is derived from the expression for general reac-
tions in [45]. Another way of determining the timesteps for tau-leaping is proposed in [11]. The local error in the macro-
scopic approximation in the Dm stage in Algorithm 3.1 depends on the method to integrate (3.16) and follows from
standard error estimates in [27]. Advancing the chemical reactions and some diffusion events in time with SSA introduces
no additional errors.
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The local error of tau-leaping for a system with a master Eq. (2.3) and R reactions is derived in [45]. Let XsðtÞ denote the
tau-leap trajectory and compare it with the SSA trajectory XðtÞ. If XsðtÞ ¼ XðtÞ ¼ x then
E½Xsðt þ DtÞ � Xðt þ DtÞ� ¼ �0:5Dt2
XR

r1¼1

XR

r2¼1

mr1 ar2 ðxÞðar1 ðxþ mr2 Þ � ar1 ðxÞÞ þ OðDt3Þ: ð3:20Þ
With
r1 ! ðjkÞ; r2 ! ðlmÞ; ar1 ðxÞ ¼ qjkxij; ar2 ðxÞ ¼ qlmxil;

mr1 ¼ gjk; mr2 ¼ glm; glm;m ¼ 1; glm;l ¼ �1; glm;i ¼ 0; i – l or m;
from the definition of mesoscopic diffusion in (2.5), the sum on the right hand side in (3.20) is
X
jk

X
lm

gjkqlmxilqjkglm;j ¼
X

jk

gjkqjk

X
lm

qlmxilglm;j ¼
X

jk

gjkqjk

X
l

qljxilglj;j �
X

m

qjmxijgjm;j

 !

¼
X

jk

gjkqjk

X
l

qljxil � xij

X
m

qjm

 !
: ð3:21Þ
Introduce the diffusion of species i in cell j
dij ¼
X

l

qljxil � xij

X
m

qjm ¼
X
l–j

Q jlxil þ Q jjxij ¼ QxT
i:

� �
j:
Then the expected local error for diffusion tau-leaping in cell l is obtained from (3.20), (3.21), and the above definition
E½Xsðt þ DtÞ � Xðt þ DtÞ�il ¼ �0:5Dt2
X

jk

gjk;lqjkdij þOðDt3Þ ¼ �0:5Dt2ðQdi:Þl þOðDt3Þ

¼ �0:5Dt2 Q2xT
i:

� �
l
þOðDt3Þ: ð3:22Þ
The conclusion from our derivations is

Proposition 3.4. The expected value of the difference after one timestep Dt between the tau-leap trajectory Xs and the SSA
trajectory X starting at XsðtÞ ¼ XðtÞ is for species i
E½Xsðt þ DtÞ � Xðt þ DtÞ�i: ¼ �0:5Dt2Q 2xT
i: þOðDt3Þ:
Assume that the integration is numerically stable with Dt. Then it is proved for linear propensities in [45] that globally at
tn, the difference will be of OðDtÞ, one order lower than the error due to the operator splitting in Section 3.1.

The system of differential equations for the mean values (3.16) is solved either by the Euler forward or the Euler backward
method. The new x at tnþ1 is compared to the analytical solution xðtnþ1Þ with the same initial data xn ¼ xðtnÞ. In the Euler
methods, we have
xnþ1
i:

� �T ¼ xn
i:

� �T þ DtQ xm
i:

� �T
;

xnþ1
i:

� �T � xi:ðtnþ1ÞT ¼ s0:5Dt2Q2 xi:ðtnÞð ÞT þOðDt3Þ;
ð3:23Þ
with m ¼ n and s ¼ �1 for the forward method (cf. (3.17)) and m ¼ nþ 1 and s ¼ 1 for the backward method. The backward
method has no restrictions on Dt for stability for our Q and it is proved in [19] that the non-negativity x is preserved for any
positive timestep. For a sufficiently small timestep, x remains non-negative also with the forward method. Globally, both
Euler methods are first order accurate.

The modulus of the leading term in the local errors is the same for the tau-leap method and the two Euler twins in Prop-
osition 3.4 and (3.23). The timestep Dtn is chosen here such that the estimated relative local error is less than a prescribed
relative tolerance �3 at every vertex where the diffusion is simulated with tau-leaping or at the macro level. The local relative
error in species i at vertex l at tn ðlren

ilÞ due to the approximations of the diffusion is
lren
il ¼ 0:5Dt2 Q 2 xn

i:

� �T
� �

l

��� .
xn

il

���:

Then in order to have lreil 6 �3 everywhere the timestep is
Dtn
6 min

i

2�3

max
l

Q2 xn
i:

�T
� �

l

� .
xn

il

��� ���
0
B@

1
CA

1=2

: ð3:24Þ
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3.4. Algorithm

A realization of the process governed by (2.7) is initialized by generating Q in (2.10) including all vertices in the mesh.
Determine the error tolerances �2 and �3 in (3.19) and (3.24).

The timestep Dtn in the Strang splitting, tau-leaping and macroscopic diffusion is chosen to satisfy (3.24) based on the
solution xn. Then a vertex j is classified for species i as either being a macro vertex, j 2 V i

m, a tau vertex, j 2 V i
s, or a SSA vertex,

j 2 V i
SSA, with V i

m [ V i
s [ V i

SSA ¼ V. A macro vertex j for species i fulfills the inequality in (3.19) at tn. If the probability to obtain
a negative copy number at a vertex in V n V i

m exceeds �1 in (3.15), i.e. if
xn
ij þ lj � jð�1Þrj < �1; ð3:25Þ
then j is a SSA vertex for species i. The Skellam distribution is always approximated by the normal distribution as in (3.15).
With �1 ¼ 0:01;j ¼ 2:33, and with �1 ¼ 0:025;j ¼ 1:96. The remaining vertices are classified as tau vertices in V i

s.
The diffusion between a pair of vertices (j, k) is performed with the macroscopic approximation, tau-leaping or SSA

depending on the classification of j and k. If both j and k belong to V i
m then the diffusion is macroscopic in both directions

on the edge, ðj; kÞ; ðk; jÞ 2 E i
m. The diffusion matrix Q m is the submatrix of Q where rows and columns corresponding to ver-

tices in V i
m are included. The diagonal element in Qm is adjusted so that

P
jQm;jk ¼ 0 for all k. The submatrix Qm has the same

properties as the full matrix Q in (2.10) and the condition at the boundary of the subgraph consisting of vertices in V i
m is a

discretization of a Neumann condition. If V i
m ¼ V and the diffusion is deterministic everywhere, then Qm ¼ Q and the solu-

tion is given by a discretization of the Laplace operator on the whole mesh, see Section 2.
The total number of molecules in the macro vertices is preserved with the Euler methods. Let e be the vector with all ele-

ments equal to 1 and let ~xij denote the components of xi: with j 2 V i
m. Then by (3.23) we have
eT ~xnþ1
i:

� �T ¼ eT ~xn
i:

� �T þ DtneT Qm ~xm
i:

� �T ¼ eT ~xn
i:

� �T
; m ¼ n or nþ 1;
and the total number of molecules of species i, eTð~xn
i:Þ

T , is constant.
The diffusion between two vertices j and k is updated by tau-leaping, if j 2 V i

s, there is an edge between j and k, and
k 2 V i

s [ V i
m. After summation over all permissible k, the new state at j is then given by (3.9) and (3.13). SSA is used for sim-

ulation of the diffusion between the remaining pairs of vertices (j, k) with j 2 V i
SSA and k 2 V. Both tau-leaping and SSA keep

the total number of molecules constant.
Real numbers are not permitted in the tau-leap algorithm and SSA. Therefore, the copy numbers updated by macroscopic

diffusion are rounded to nearest integers. Let bxn
ijc and dxn

ije be the integers such that bxn
ijc 6 xn

ij 6 dxn
ije and bxn

ijc þ 1 ¼ dxn
ije. Then

xn
ij is rounded with probability p ¼ xn

ij � bxn
ijc to dxn

ije and with probability 1� p to bxn
ijc.

Tau-leaping, SSA, and the Euler forward and backward integrations conserve the total number of molecules. By rounding
the real numbers from the macroscopic integration to integers as above, the mean value of the total number of molecules is
conserved. Since only the expected value is preserved in each step, there may be a drift away from the initial total number. A
possible remedy is to instead apply the rounding to the macroscopic fluxes. The number of molecules xn

ij is non-negative and
therefore our algorithm for the diffusion is stable in the mean.

In conclusion, the algorithm for simulation of the chemical system in the time interval [0,T] is

Algorithm 3.5

1. Assemble Q, specify �2 and �3, let t0 ¼ 0 and n = 0 and initialize x0.
2. Compute the timestep Dtn at tn.
3. Classify the vertices for each species i separately.

(a) Decide if a vertex j is a macro vertex, if yes then j! V i
m

(b) Decide if a vertex j is a SSA vertex, if yes then j! V i
SSA

(c) The tau vertices are in V i
s ¼ V n V i

m n V i
SSA
4. Determine the approximation of the diffusion for all the pairs (j, k) of vertices with an edge between them for each
species i separately.
(a) If j; k 2 V i

m, then use macroscopic diffusion for (j, k) and (k, j), (j, k), ðk; jÞ ! Ei
m

(b) Compute Qm

(c) If j 2 V i
s and k 2 V i

s [ V i
m, then use the tau-leap method for the diffusion from k to j and from j to k, ðj; kÞ; ðk; jÞ ! Ei

s
(d) If j 2 V i

SSA and k 2 V, then use SSA for the diffusion from k to j and from j to k, ðj; kÞ; ðk; jÞ ! E i
SSA
5. First step in Algorithm 3.1 with macroscopic diffusion for all species i and ðj; kÞ 2 E i
m, A ¼ Dm, conversion of real num-

bers to integers.
6. Second step in Algorithm 3.1 with tau-leap diffusion for all species i and ðj; kÞ 2 Ei

s;B ¼ Ds.
7. Third step in Algorithm 3.1 with SSA for diffusion for all species i and ðj; kÞ 2 Ei

SSA and all reactions at every vertex for all
species, C ¼MþDSSA.

8. Fourth step in Algorithm 3.1 with tau-leap diffusion.
9. Fifth step in Algorithm 3.1 with macroscopic diffusion.

10. The trajectory is advanced to tnþ1. If tnþ1 P T , then STOP. Otherwise, let n :¼ nþ 1 and go to 2.
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Other methods for approximating the diffusion can replace SSA, tau-leaping, and macroscopic integration in the algo-
rithm as long as there are effective criteria to choose between them.

3.5. Computational work

The computational work for reactions and approximation of the diffusion in one timestep of length Dtn can be estimated
for SSA, tau-leap, and the macro level as follows assuming that the reaction events are few.

The expected value of the sum of L timesteps dt‘ in one cycle of SSA in step 7 of Algorithm 3.5 is according to (3.8)
E
XL

‘¼1

dt‘

" #
¼
XL

‘¼1

1=b‘ � L=b1; b1 ¼
XK

j¼1

XR

r¼1

ar xn
:j

� �
þ
XN

i¼1

X
ðj;kÞ2Ei

SSA

Q kjx
n
ij:
Hence, the expected number of steps to reach Dtn is L � Dtnb1. The major part of the computational work in every SSA-step is
spent on determining which reaction or diffusion event occurs. Let jE i

SSAj denote the number of elements in Ei
SSA. Then this

search is proportional to the sum of jE i
SSAj and the number of reaction channels KR. The total work with straightforward

SSA in ½tn; tnþ1� is then
WSSA � DtncSSAb1ðKRþ jESSAjÞ; ESSA ¼
[N
i¼1

Ei
SSA; ð3:26Þ
for some constant cSSA.
With tau-leaping in ½0;Dtn�, a Poisson number is generated for each pair ðj; kÞ in E i

s. Using Knuth’s algorithm [34] the com-
putational work for one random number is csDtnQkjxn

ij [1] at tn where cs is a small constant. Then the total work is
Ws � Dtncs
XN

i¼1

X
ðj;kÞ2Ei

s

Q kjx
n
ij: ð3:27Þ
Faster methods for generation of Poisson numbers are found in [32]. The gain in computing time when moving one pair (j,k)
for species i from being simulated by SSA to the tau-leap method is derived from (3.26) and (3.27)
DWSSA!s � DtnQ kjx
n
ijðcSSAðKRþ jESSAjÞ � csÞ: ð3:28Þ
Since cSSAðKRþ jESSAjÞ � cs very likely is positive, the savings in CPU time are substantial, especially when xn
ij is large. This

comparison is less favorable for tau-leaping when SSA is replaced by NSM as we do in Section 4.
The work in the macroscopic diffusion is independent of the size of the elements of xn

i: . The computing time is propor-
tional to the dimension of Q m. With the Euler forward method the cost of evaluating Qm;kjxn

ij in (3.23) is denoted by cm which
is a small constant. Then the work in the time interval is
Wm �
XN

i¼1

X
ðj;kÞ2Ei

m

cm ¼ cmjEmj; Em ¼
[N
i¼1

Ei
m: ð3:29Þ
The Euler backward method is implicit in (3.23) and a system of linear equations has to be solved. The most efficient way of
solving this system is a multigrid method with a work proportional to jVmj log jVmj where jVmj is the number of macroscopic
vertices for all species. Essentially it has the form of (3.29) but with a larger cm. The marginal gain in transferring a pair of
vertices ðj; kÞ from Ei

s to Ei
m is then
DWs!m � DtncsQ kjx
n
ij � cm: ð3:30Þ
Clearly, DWs!m > 0 for a sufficiently large xn
ij.

4. Numerical results

In this section we test the adaptive diffusion approximation in a few different cases. In the first example in Section 4.1, we
illustrate the principles of the method in a 2D model problem with a single diffusing species and the convergence of the
method is confirmed in a Matlab implementation. In Section 4.2 we apply the algorithm to a more biologically relevant
geometry in 3D: a model of a yeast cell. The potential of our approach is shown in physiologically relevant scenarios.

4.1. Diffusion

The adaptive method in Algorithm 3.5 is applied to diffusion of one species with the diffusion constant c ¼ 0:001 on the
unit square 0 6 x; y 6 1 in 2D. The mesh is generated with the PDE toolbox in Matlab and has 103 vertices. The vertices and
the edges in the primal mesh and the subvolumes in the dual mesh are displayed in Fig. 4.1. With the parameter c, the initial
state for the concentration / in the vertices is
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Fig. 4.1. The primal mesh (left) and the dual mesh (right).
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Fig. 4.2. The initial and final FE solution along the main diagonal.
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/ðx; yÞ ¼ 0:5cð1þ cosðprÞÞ if r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 1;

0 otherwise:

(
ð4:1Þ
The corresponding number of molecules xj in the subvolumes Cj; j ¼ 1; . . . ;K , is rounded to an integer as in Algorithm 3.5.
The macroscopic diffusion is advanced in time by the backward Euler method.

The solution is simulated in the time interval 0 6 t 6 50. A FE solution is computed with Dt ¼ 0:05 for comparison and it
is denoted by /FE. The initial and final FE solutions when c ¼ 3000 are plotted in Fig. 4.2 along the main diagonal from the
origin. Since the diffusion propensities are linear, the mean values of the concentrations at the vertices taken over the tra-
jectories are given by /FE. The relative difference d between our solution / and the FE solution is measured as
d ¼ 1
max

j
/FE

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

/j � /FE
j

� �2
jCjj

r
: ð4:2Þ
The diffusion is partitioned individually in every trajectory into SSA, tau-leap or macroscopic simulation with the tolerances
�1 ¼ 0:01 and �2 ¼ �3 ¼ 0:03 defined in Sections 3.2.2, 3.2.3 and 3.3.

The average solution obtained after adaptive simulations of m trajectories is compared to the FE solution in Table 4.1 at
t ¼ 50 with c ¼ 3000 in the initial state (4.1). When the number of trajectories is increased by a factor 10, the difference is
reduced by about 1=

ffiffiffiffiffiffi
10
p

as expected by the central limit theorem. The total number of failures with negative copy numbers
in the tau-leap method is ks and the fraction of failures at all timesteps at all tau-leap vertices is fs in the table. The number of
necessary corrections is low with �1 ¼ 0:01.

The variation of the timestep in one trajectory is found to the left in Fig. 4.3. The percentage of tau-leap vertices and SSA
vertices is shown in the right panel of the same figure. The number of tau-leap vertices increases as the number of cells with
few molecules decreases, cf. Fig. 4.2. There is no macroscopic diffusion in this case.



Table 4.1
Simulations with m trajectories. Comparison with the FE solution (d defined in (4.2)) and the number of sign errors in tau-leap ðksÞ and the quotient between
failures and the total number of tau-leap steps ðfsÞ.

log10m d ks fs

1 10.5 39 0.00033
2 3.5 228 0.00020
3 0.90 2567 0.00022
4 0.27 24970 0.00022
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Fig. 4.3. The variation of the timestep Dt (left) and the percentage of SSA and tau-leap (TL) (right) for a single trajectory.
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When c in (4.1) is increased, we expect the concentrations in the trajectory to approach the macroscopic solution; see the
end of Section 2. We take c ¼ 3� 10m; m ¼ 0;1; . . . ;9, and record the outcome for one trajectory. The percentage of SSA, tau-
leaping, and macroscopic diffusion for the whole time interval for ten c-values is displayed to the left in Fig. 4.4. As c in-
creases, different methods are predominant in the simulation. The convergence of / to /FE at t ¼ 50 is demonstrated to
the right in the same figure. We expect the deviation of / from /FE to decay as 1=

ffiffiffi
c
p

in agreement with the discussion in
the end of Section 2 and (2.11) (cf. also Table 4.1). In one comparison, the same timestep sequence is used for both our solu-
tion and the FE solution and the convergence is as expected. The reduction for increasing m is even faster than 1=

ffiffiffiffiffiffi
10
p

per
decade for large c where the macroscopic approximation, which is equivalent to FE, prevails. A trajectory determined with
the automatic timestep selection is also compared to the FE solution with Dt ¼ 0:01. Then there is a remaining error due to
the time discretization for m > 4. The computing time is almost independent of c with m between 1 and 7 but increases lin-
early when the number of molecules is high ðm ¼ 8;9Þ. There are no failures in the tau-leap method except for m ¼ 2 when
there are 8 and m ¼ 3 when there are 3.

The performance in the left panel of Fig. 4.4 is explained by a simple 1D model as follows. Let n 2 ½0;1� be the space coor-
dinate and xðnÞ the number of molecules in the interval with xðnÞ ¼ 0:5cð1þ cosðpnÞÞ as in (4.1). Then l and r in (3.12) are
l � Dtcx00 ¼ �0:5cDtcp2 cosðpnÞ; r � h�1 ffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dtcx

p
¼ 2h�1 ffiffiffiffiffiffiffiffiffiffi

Dtcc
p

cosð0:5pnÞ:
A somewhat stricter criterion for SSA simulation at n than in (3.25) is that
xþ l� jð�1Þr � 0:5cð1þ ð1� Dtcp2Þ cosðpnÞÞ � 2h�1j
ffiffiffiffiffiffiffiffiffiffi
Dtcc

p
cosð0:5pnÞ < 0: ð4:3Þ
In our case, Dtcp2 is small and can be ignored. Thus, (4.3) is satisfied when n > 2p�1 arccosð2j
ffiffiffiffiffiffiffiffi
Dtc

p
=ðh

ffiffiffi
c
p
ÞÞ, i.e. the larger c

is, the closer to 1 n is and the fewer vertices are updated by SSA but there is always a n < 1 no matter how large c is (cf.
Fig. 4.4 where SSA is active for all c). On the other hand, if c is sufficiently small, then (4.3) is fulfilled by any n in ½0;1�
and SSA is applied everywhere. The test for macroscopic diffusion in (3.19) in the jth vertex at nj is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjQ jxÞj

q
xj

� 2
ffiffiffiffiffi
ccp cosð0:5pnjÞ

hc cosð0:5pnjÞ2
¼ 2

ffiffifficp
h
ffiffiffi
c
p

cosð0:5pnjÞ
6 �2: ð4:4Þ
If c is so large that c P 4c=ðh�2Þ2, then the condition in (4.4) is satisfied by n 2 ½0; nmax�with nmax ¼ 2p�1 arccosð2 ffiffifficp =ðh�2
ffiffiffi
c
p
ÞÞ

which grows with increasing c. Indeed, there is no macroscopic diffusion for c below about 3� 104 in Fig. 4.4.
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4.2. Reaction–diffusion systems in 3D

We will apply the adaptive algorithm to a biochemical reaction system in a 3D geometry in this section. The benefits of
our new scheme will be evident in different modeling scenarios. There is one situation where the present algorithm will be
more expensive than a purely stochastic simulation of the full system. The purpose with the following test cases is not to
draw any biological conclusions, but rather to show in which cases our approach will be useful and when it is not. However,
we will stay within the range of physiologically relevant values for the geometry, the copy numbers of the species and the
diffusion constants. The test cases we will consider could be parts of a larger, more detailed model of a complicated biochem-
ical pathway.

In this section we have used the URDME software [14], an efficient implementation of NSM [18] on unstructured meshes,
and extended it with the hybrid functionality. The macroscopic diffusion operator is integrated by the explicit Euler forward
scheme. The order between NSM and tau-leaping is here interchanged in Algorithm 3.5 as this was the splitting order deter-
mined to be most efficient for this example. The experience from operator splitting applied to the numerical solution of par-
tial differential equations is that there may be an unexpected loss of accuracy due to the splitting in very stiff problems such
as in combustion applications. Then the order of the operators may be crucial to improve the situation [49] but we have not
explored that matter in our examples.

The geometry, the mesh and the assembly of the stiffness and mass matrices as well as postprocessing is handled by COM-
SOL Multiphysics 4.3. All computations in this section have been performed on a 2.0 GHz MacBook Core Duo with 2 GB
RAM.

4.2.1. Model
The geometry is depicted to the left in Fig. 4.5. It is a simple model made up of three subdomains: a cube with side length

8 lm, a sphere with volume 62� 10�15l or 62 fl and a smaller, concentric sphere with volume 4.1 fl. This geometry is here
Fig. 4.5. The geometry of the yeast cell model with the nucleus, the cell, and the surrounding box (left). The variation of the subvolume size in the domain
(right).



Table 4.2
The chemical reactions of the bistable model. The constants take the values k1 ¼ 150 s�1 ; ka ¼ 1:2� 108 s�1 M�1; kd ¼ 10 s�1 and k4 ¼ 6 s�1.

EA!
k1 EA þ A EB!

k1 EB þ B EA þ B �
ka

kd

EAB EB þ A �
ka

kd

EBA

EABþ B �
ka

kd

EAB2 EBAþ A �
ka

kd

EBA2 A!k4 ; B!k4 ;

Table 4.3
The chemical reactions of the nuclear module. The parameter ka takes the same value as in Table 4.2, k5 ¼ 1 s�1 and kdn ¼ 1 s�1.

Aþ X!ka Aþ X� X� !k5 X A!kdn ;

Bþ Y!ka Bþ Y� Y� !k5 Y B!kdn ;
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thought of as a simplified model of a baker’s yeast cell with a nucleus immersed in a cube. In the following, we will refer to
the different subdomains as the cell (the two spheres together), the cytosol (the region between the two spheres) and the
nucleus (the inner sphere).

The mesh has a different maximal element size in the different subdomains. It is denser inside the nucleus and in the
cytoplasm than in the cell exterior with the largest elements farthest away from the cell. The total number of vertices is
6889 giving a total of 82:6� 104 to 96:4� 104 degrees of freedom (dofs) or variables depending on the scenario below.
The size of the subvolumes is shown in color at an intersection through the center of the domain to the right in Fig. 4.5.

To introduce a clear space dependence in the model, the reaction network in our test case will consist of one cytosolic and
one nuclear module. The two modules are coupled by allowing two of the species of the cytosolic module to enter the nu-
cleus, where they can interact with the nuclear module.

The cytosolic module is a bistable system taken from [18], see Table 4.2. It was used in [19] to demonstrate that we can
recover the properties of the model using unstructured meshes and in [14] as a benchmark problem. All species except A and
B are confined to the cytosol region between the two spheres.

The proteins diffuse with c ¼ 1 lm2=s (large proteins), and the entry of A and B into the nucleus is modeled as a diffusion
event (equivalent to a first order reaction) with c ¼ 0:01 m2=s.

The modeling of the penetration of A and B into the nucleus is obviously a simplification. A more realistic approach would
be to introduce additional membrane bound species at the membrane modeling receptors and pore species and let molecules
pass the membrane through a series of reactions involving these additional species. Approximation of the transport as a dif-
fusion event here serves two purposes: we avoid adding more species to the model as the idea with this example is to mea-
sure the performance of the hybrid method, and we also introduce a case where we have different diffusion constants in
different regions of space. This allows us to illustrate the behavior of the partitioning algorithm in Section 4.2.4.

The reactions of the nuclear module are found in Table 4.3. This is a simple model composed of species X and Y which are
activated by the proteins A and B, respectively.

The model described above is simulated in Scenario 1. In order to illustrate the potential issue of stiffness in spatial mod-
els, two additional model scenarios are considered where we include smaller, abundant molecules in the model. In Scenario
2, they will both be confined to the cytoplasm in concentrations relevant for e.g. GTP and cAMP, and in Scenario 3 one of
them will initially be present only outside the cell in a macroscopic concentration relevant to e.g. a metabolite in the med-
ium. In the first case, we will see that a purely stochastic simulation is the most efficient, in the second case the hybrid meth-
od combines NSM and tau-leap to make the simulation more efficient, and in the third case all three methods will be used by
the adaptive hybrid method giving a speed-up of more than 3000 compared to NSM alone.

4.2.2. Scenario 1: Simulation of the cytosolic and nuclear module
For reference, we simulate only the cytosolic and nuclear module to a final time t = 100 s using URDME and a purely sto-

chastic simulation. Initially, 300 molecules each of the enzymes EA and EB are spread randomly in the cytoplasm and 300
molecules of X and Y in the nucleus, all other species are zero.

The distribution of A molecules in the cytosol is depicted to the left in Fig. 4.6 and to the right there is a close-up view of
the nucleus and the distribution of X�. The CPU time of this simulation was 81 s and the number of events 53:8� 106 (of
which 87% were diffusion events), the total number of X� was 31 molecules and a stochastic description is obviously
desirable.

We simulated the same system with the adaptive hybrid algorithm. In this case, the system is not sufficiently stiff for the
method to be competitive. Even though tau-leap is selected in some subvolumes, the computational savings are not enough
to compensate for the overhead. The simulation took 1500 s, more than ten times slower than the pure NSM simulation.

4.2.3. Scenario 2: Two small species inside the cell
Often, small abundant species are not explicitly treated in models. Instead, it is assumed that their concentration does not

change significantly during the time interval under study and their effect is modeled implicitly. It is highly plausible that



Fig. 4.6. The distribution of A in the cytosol (left) and that of X� inside the nucleus after 100 s (right). Blue corresponds to a low number and red to a high
number. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.7. The partitioning chosen by the adaptive hybrid algorithm for the small species is shown to the left at t = 0.01 s. Red color indicates a macroscopic
diffusion, green tau-leap and blue that the subvolume is simulated with NSM. To the right we show the small species as it enters the cell at the plasma
membrane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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such assumptions are erroneous, at least locally in space and time, and they require more a priori knowledge about the sys-
tem. A computationally expensive alternative avoiding such assumptions is to include them explicitly in the models. One
recent example where small molecules such as ATP, GTP, GDP, and cAMP are included explicitly in a well stirred stochastic
model of the Ras/cAMP/PKA pathway can be found in [12], where the levels of the guanine nucleotide pools are suggested to
play an important role for the dynamics of the system.

In this scenario, two smaller species will both be confined to the cytoplasm, and can be thought of as e.g. cAMP and GTP.
At t = 0, we simulate a step increase in the cytoplasm of the concentration of one of the species to 0.14 mM (4:2� 106 mol-
ecules) while the other has a concentration of 10 lM (3� 105 molecules). These numbers correspond roughly to the copy
numbers of GTP and cAMP used in the model from [12]. In this test scenario, neither of the small species interact with
the proteins in the cytosolic and nuclear module but they diffuse with c ¼ 250 m2=s making the model stiff. We could easily
let them react with e.g. A and B in a more detailed model but this is not necessary in order to illustrate the computational
difficulties their inclusion introduce.

Using a pure NSM simulation to reach t = 0.001 s, we need 181 s of CPU time and NSM has generated 83:2� 106 diffusion
events and only 97 chemical reactions.

Next we simulate the system with our algorithm with the probability of computing negative copy numbers �1 ¼ 0:05 and
the relative error tolerances �2 ¼ �3 ¼ 0:05 for the diffusion. The method automatically detects that the small molecules are
sufficiently many to be simulated with the tau-leap method in most of the domain (about 10.4% of the total degrees of free-
dom are tau-leaped) and this makes the simulation 10 times faster than the pure SSA simulation. The simulation from t = 0 to
t = 0.001 s took 18.6 s of CPU time. A simulation to the final time t = 100 s would still take about 3 weeks, but this is an
improvement compared to over 7 months using only NSM.



L. Ferm et al. / Journal of Computational Physics 229 (2010) 343–360 359
4.2.4. Scenario 3. A small species in high concentration in the cell exterior
In this final scenario, one of the small species inside the cell is removed and instead it is present outside the cell in an

initial concentration of 20 mM and it can be thought of as e.g. a small metabolite in the medium. We let it enter the cell
by slow diffusion events over the plasma membrane ðc ¼ 0:25 nm2=sÞ. In this case, it is impossible to simulate the system
on a time scale relevant to the dynamics in the nuclear and cytosolic module. It took 558 s with only NSM using URDME to
evolve the system to t ¼ 1� 10�5 s. Not a single reaction event occurred in this time interval.

The adaptive method detects that macroscopic diffusion can be used for the small species in almost all subvolumes in the
exterior of the cell. Since the work for macroscopic diffusion is small, this saves a lot of computational time. Our algorithm
simulates the system to t = 0.01 s using 187 s of CPU time, about 3000 times faster than SSA alone. The simulation cost for the
hybrid algorithm is about the same as in Scenario 2 above. Adding species in macroscopic concentration does not affect the
CPU time while it makes a purely stochastic simulation of the system nearly impossible.

The left panel of Fig. 4.7 shows the partitioning into SSA, tau-leap and macroscopic degrees of freedom for the small,
extracellular species. Near the plasma membrane, the subvolumes become smaller, cf. Fig. 4.5, and the hybrid algorithm
chooses tau-leap instead of the macroscopic solver. At the membrane, the much smaller diffusion constant allows for a mac-
roscopic treatment even though the subvolumes are smaller there too. In most of the cytoplasm, tau-leap is chosen since the
concentration is not yet sufficiently large. Inside and near the nucleus, NSM is the dominant method. The small species en-
ters the cell through the plasma membrane in the right panel of Fig. 4.7.

5. Conclusions

An algorithm has been proposed and analyzed for chemical systems with a spatial variation modeled by the reaction–dif-
fusion master equation (RDME). The assumption is that diffusion events outnumber reaction events in a realization of the
system and a special treatment of the diffusion is necessary. The RDME operator is split into three parts and advanced in
time by a Strang splitting procedure. The timesteps are chosen adaptively based on an estimated local error. The molecular
diffusion is simulated at the mesoscopic level by the stochastic simulation algorithm (SSA) or tau-leaping and at the mac-
roscopic level by the diffusion equation. The algorithm switches automatically and dynamically between the different
approximations with a control of the errors. All reactions are handled by SSA. The method is applied to diffusion in 2D
and a model of a yeast cell in 3D with more than twelve species and realistic parameters in three scenarios. With few mol-
ecules, SSA is the method of choice. The diffusion of species with higher concentrations are simulated with tau-leaping and
for the largest concentrations, macroscopic diffusion is switched on. The CPU time is reduced by a factor 3000 in one example
allowing macroscopic diffusion instead of diffusion by SSA making simulations in short intervals feasible on a desktop
computer.

The method proposed in this paper treats all reactions stochastically with NSM independently of the choice of method for
diffusion. The algorithm deals efficiently with stiffness due to diffusion. However, once the cost due to diffusion events has
been reduced, simulations might still be slow due to fast reactions. A natural next step to further improve the current meth-
od is to develop similar criteria for the reaction contributions and devise appropriate approximations for the reaction terms
as well. An alternative is to advance the reactions by modifications of SSA developed for stiff, well stirred systems, see e.g.
[10,17].
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